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Abstract This work investigates neural network models
for predicting the trypanocidal activity of 28 quinone
compounds. Artificial neural networks (ANN), such as
multilayer perceptrons (MLP) and Kohonen models, were
employed with the aim of modeling the nonlinear relation-
ship between quantum and molecular descriptors and
trypanocidal activity. The calculated descriptors and the
principal components were used as input to train neural
network models to verify the behavior of the nets. The best
model for both network models (MLP and Kohonen) was
obtained with four descriptors as input. The descriptors
were T5 (torsion angle), QTS1 (sum of absolute values of
the atomic charges), VOLS2 (volume of the substituent at
region B) and HOMO−1 (energy of the molecular orbital
below HOMO). These descriptors provide information on
the kind of interaction that occurs between the compounds
and the biological receptor. Both neural network models
used here can predict the trypanocidal activity of the
quinone compounds with good agreement, with low errors

in the testing set and a high correctness rate. Thanks to the
nonlinear model obtained from the neural network models,
we can conclude that electronic and structural properties are
important factors in the interaction between quinone
compounds that exhibit trypanocidal activity and their
biological receptors. The final ANN models should be
useful in the design of novel trypanocidal quinones having
improved potency.

Keywords Quinone . Trypanocidal activity . Neural
network .Multilayer perceptrons . Kohonen models

Introduction

American trypanosomiasis—or Chagas disease—is a para-
sitic disease endemic to Latin America, where it is a major
cause of heart disease with 18–20 million people infected
and over a 100 million at risk. It is caused by infection with
the flagellate protozoan Trypanosoma cruzi, which is
transmitted to humans by triatomine vectors (kissing bugs)
or through contact with infected blood [1].

Trypanosoma cruzi, a haemoflagelete protozoan (family
Trypanosomatidae, order Kinetoplastida), is the etiological
agent of Chagas disease and its life cycle involves
obligatory passage through vertebrate (mammals, including
human) and invertebrate (hematophagus triatomine insects)
hosts. Transmission of the infective trypomastigote form
occurs mainly by vector insect bite (80–90%), blood
transfusion (5–20%) and congenital routes (0.5–8.0%).
The chronic disease is characterized by cardiac, digestive
or neurological disturbances [2]. Furthermore, the develop-
ment of an effective vaccine has been hampered by the
complex biology and high adaptability through antigenic
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variation of the protozoan causative agent. Thus, the main
line of defense against parasitic infections has been through
chemotherapy [3]. Problems associated with trypanocidal
drugs include their limited efficacy, human toxicity, high
cost, and the emergence of drug-resistant trypanosome
strains [4]. In view of this, the development of new classes
of readily accessible compounds with trypanocidal activity
and improved pharmacological properties is imperative.

Quinones, particularly 1,4-naphthoquinones (1,4-NQs),
are widespread among the secondary metabolites of plants
and microorganisms. They can also be prepared syntheti-
cally and are widely produced by the chemical industry as
organic dyes. Interest in 1,4-NQ is not restricted to the
chemistry of dyes; a wide spectrum of biological activities
is described for them, including antitumor, wound healing,
anti-inflammatory, antiparasitic and cytotoxic activities,
among others. These biological activities have justified
the large number of studies found in the literature aimed at
the synthesis and evaluation of either natural quinones or
their analogues as potential pharmacological agents [5].

Artificial neural networks (ANNs) are widely used as
pattern recognition methods to learn relationships in a way
similar to that used by the human brain. ANNs have
become an important modeling technique in numerous
areas of chemistry and pharmacy. Because they have a great
capacity for adaptability, they are recommended as a
powerful tool for pattern classification and for building
predictive models [6, 7].

In this work, neural network models for predicting the
trypanocidal activity of 28 quinone compounds are inves-
tigated. With the aim of modeling the nonlinear relationship
between quantum and molecular descriptors and trypanoci-
dal activity, we employed ANNs such as multilayer
perceptrons (MLP) and Kohonen models. In the present
work, two types of variables were used as input to train the
neural network models: calculated descriptors and principal
components (PCs). In this case, the most important PCs
were then taken as network inputs instead of the original
data. Both models were built in order to verify the behavior
of the nets.

Methods

Artificial neural networks provide a powerful technique for
modeling nonlinear relationships [8]. The ANN technique
was applied in order to discover the possible existence of
non-linear relationships between activity and molecular
descriptors that are ignored in linear approaches.

Neural networks are, therefore, commonly applied in
pharmaceutical research to analyze the complex relation-
ships that exist among the structure of molecules and their
physicochemical or biological properties, with the goal of

identifying which structural features are of pharmacological
importance [9]. For this purpose, we have used molecular
descriptors. These descriptors allow structural information
to be used as the input required for training the neural
networks.

The quinone compounds examined here have been
reported in the literature as powerful and selective
trypanocidal agents [10]. The central structure, numbering
and chemical structure of the 28 quinone compounds
studied in this work are presented in Fig. 1.

The geometry optimizations of the quinone compounds
were performed with the initial structures (see Fig. 1) by
using the DFT/B3LYP functional [11]. The choice of the
DFT method was made because recent studies have
demonstrated that the DFT/B3LYP method leads to
excellent results for the analysis of geometries and energies
[12, 13]. After obtaining the minimum energy conformation
for each compound, molecular properties (variables or
descriptors) of the 28 quinone compounds were calculated
using the DFT/B3LYP functional with the 6-31G* basis set,
as implemented in the GAUSSIAN 98 computational
package [14]. This basis set is the standard basis set for
calculations involving up to medium size systems. These
descriptors are: total energy, energy of the highest occupied
molecular orbital (HOMO), energy of the molecular orbital
below HOMO (HOMO−1), energy of the lowest unoccu-
pied molecular orbital (LUMO), differences of some
molecular orbital energies, bond orders over all bonds that
comprise the basic skeleton of the quinone compounds
studied, molecular hardness, molecular softness, dipole
moment, molecular volume, torsion angle, atomic charges
Qi, i=1, 2,...,18 (see Fig. 1), and the sum of the atomic
charges of the substituents at regions A and B (see Fig. 1);
atomic charges were calculated with the CHELPG [14]
(Charges from Electrostatic Potentials using a Grid based
method) option in the GAUSSIAN 98 program [15]. The
octanol/water partition coefficients were calculated using
the program XlogP [16], and the topological descriptors
were evaluated from the Dragon 3.0 molecular package
[17], totaling 209 calculated descriptors for each molecule.

The whole data set was autoscaled along all the
variables, i.e., normalized and centered on the mean, so
that they could be compared to each other on the same
scale.

After calculation of the atomic and molecular descrip-
tors, Fisher’s weights of these descriptors were obtained
and the more significant descriptors were selected, i.e.,
those that had greatest Fisher weights were considered to
have a high ability in the discrimination (separation)
between active and inactive compounds.

Fisher’s weights allow evaluation of how useful a
variable is to discriminate the samples between groups.
This tool uses the variance and the difference between
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averages for each variable for a group of representative
samples (training set) to calculate a score related to the
ability of the variable to indicate differences between
groups [18].

Results and discussion

Multi-layer perceptrons

Multi-layer perceptrons (MLP) are feedforwarded multilay-
er networks that provide flexible frameworks for non-linear

function estimation. An MLP consists of formal neurons or
nodes, and the connections (weights) among them. In a
MLP architecture, the neurons are arranged in layers (an
input layer, one or more hidden layers, and an output layer),
and the connections are unidirectional from input to output.
Adjacent layers are fully connected but no connections
exist among neurons within the same layer. This architec-
ture computes a numerical output value, f(x), for a given
numerical input vector x, which is the row of the X matrix
corresponding to a given object (molecule, species, etc...).
A formal neuron sums up incoming signals multiplied by the
connection weights, subtracts a threshold value (or bias θ),

Fig. 1 The central chemical structure, numbering used and chemical structure of the 28 quinone compounds studied
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Fig. 1 (continued)
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and calculates an output signal by using the so-called transfer
function. Neurons can have different transfer functions.
Input neurons simply distribute the descriptor data to the
hidden layer neurons without any further computation.
Hidden layer neurons typically have a sigmoidal transfer
function:

sf inputð Þ ¼ 1

1þ e�input
ð1Þ

that limits the neuron’s output signal to values between 0
and 1. The output layer neurons usually have sigmoidal or
linear transfer functions, depending on the application. The
whole network represents a non-linear relationship that can
be written for each output as:

by¼ f xð Þ ¼
X
h

sf
X
i

xiwih � qi

 !" #
wh � qh ð2Þ

where wih is the connection weight between the input node i
with the hidden node h and wh are the connection weights
between each hidden node h with the final output
considered, y. The values of θi and θh are the biases
corresponding to the input and hidden layers. The differ-
ence between ŷ and y (target) is the target error, which is
subsequently back-propagated to modify the weights in
order to attain the best fit [19].

In order to reduce the number of descriptors to be
considered, principal component analysis (PCA) aims at
data reduction through linear combinations of the original
variables. PCA seeks to group these correlated variables,
generating a new set of variables called principal compo-
nents (PCs). These PCs are built as linear combinations of
the original variables and have the important property of
being completely uncorrelated. The first new axis, PC1, is
chosen in the direction that maximizes the variance; the
second axis must be chosen orthogonal to the first and in
the direction to describe as much variance left as possible
and so on.

The initial data matrix, represented by X, is decomposed
into two matrices, T and P, where

X ¼ TPT ð3Þ
In Eq. 3, T is known as the scores matrix and represents the
position of the samples in the new coordinate system. The
matrix P in Eq. 3 is known as the loadings matrix and
describes how the new axes, i.e., the PCs, are built from the
original variables. The samples are mapped through scores
and variables by the loadings in the new low dimensional
vector space defined by the PCs [20].

The data set was randomly split to form training and test
data sets. The training and test data sets comprised 20 and
8 compounds, respectively. The test set was used to monitor
the overall performances of the trained network. Once the
best topology of the network was obtained and the

convergence criterion was reached, a leave-one-out cross-
validation procedure was also employed to validate the
performances of the resulting network results.

The prediction results of the different models studied are
presented in terms of root-mean-square (RMS) prediction
error. The RMS error is defined as

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

y� yp
� �2

n

vuuut ð4Þ

where y is the true value, yp the predicted value and n is the
number of samples.

The numbers of hidden neurons were first optimized by
trying several network architectures, varying the number of
neurons in the hidden layer from 1 to 20. The architecture
was obtained by averaging triplicate RMS values of the
training set for each neuron; the model with minimum RMS
for the training set was selected.

In a first step, PCA analysis with 209 descriptors was
carried out for the 28 compounds shown in Fig. 1. The first
seven PCs explained 83.8% of the data variance, and was
enough to describe the data set. The seven PCs for each
compound were used as input to the neural networks,
reducing the size of this input from 209 to 7.

The network had one input layer, one hidden layer and
one output layer. The output layer is the class of active and
inactive compounds. The hidden layer, with minimum
RMS using seven PCs, was 13 neurons. Accordingly, the
final MLP architecture was 7-13-2.

This model showed high values for RMS and with one
correctness rate of the net around 25% for the test set,
which indicates the low predictive power of the model. The
neural network of this data set revealed that there are a large
number of descriptors with many intercorrelations and
redundancies.

We next constructed another neural network model using
the best 12 descriptors, which were selected according to
the values of Fisher’s weight. These descriptors were then
used as input to the neural networks. Furthermore, the
model with minimum RMS for the training set was selected
with 20 neurons. Accordingly, the final MLP architecture
for this net was 12-20-2.

The descriptors were T1, T2, T3 and T5 (torsion angles),
BO (bond order), QTS1 (sum of absolute values of the
atomic charges), VOLS2 (volume of the substituent at
region B) and HOMO−1 (energy of the molecular orbital
below HOMO), BIC (Balaban index), E2v (weighted by
atomic van der Waals volumes), E1e (weighted by atomic
Sanderson electronegativities) and E2p (weighted by atomic
polarizabilities).

The BIC is calculated using a topological matrix of
distances in the vertex- and edge-weighted graph reflecting
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all types of atoms and chemical bonds in a given molecule
[21]. The other three topological indices (E2v, E1e and
E2p) are WHIN (weight holistic invariant molecular)
descriptors, and these descriptors contain information about
the whole 3D molecular structure in terms of size, shape,
symmetry and atom distribution. These indices are calcu-
lated from the x, y, and z-coordinates of a 3D structure of
the molecule, usually from a spatial conformation of
minimum energy, within different weighting schemes in a
straightforward manner and represent a very general
approach to describe molecules in a unitary conceptual
framework [22].

In this method, we constructed eight models randomly
separated into training and test sets (see Table 1) with 70%
of the compounds for training and 30% for testing sets,
where the model kept a constant ratio between active and
inactive compounds.

In Table 1 (see model 6) we can see that compounds 10
and 26 were classified incorrectly as active compounds.
This model presents both compounds, and has a 75%
rightness rate. From Table 1, the rightness rate of the net
stayed around 87.5% for the test set, which indicates an
improvement in the predictive power of the model
regarding the first model.

In order to verify the behavior of the net, 12 descriptors
selected by Fisher’s weights were subjected to PCA
analysis. In this case, five PCs for each compound were
used as input to the neural networks, where these
components explained 90.4% of the total data variance.

The architecture chosen and used for comparison was
that which produced the minimum error. For this model,
the architecture was 5-10-2. Therefore, in this case, using
the PCs as input to the neural network and the same
eight models with the compounds used before (see
Table 2), the results were similar to those for the 12
descriptors. The rightness rate of the net stayed around
75% for the test set and, depending on the model, the
compounds (10 and 26) were classified incorrectly as
active compounds and one compound was classified as
inactive (25).

The results obtained by PCs, which contain most of the
variability in the data set, were thus capable of describing in
a similar way the results obtained previously, albeit in a
much lower dimensional space.

In a previous work [20], four descriptors—T5, QTS1,
VOLS1 and HOMO−1 (see Table 3)—were important for
the separation between active and inactive compounds, and
these were used as input to the neural networks. The
process of choosing the net architecture was as described
above. For this model, the architecture was 4-10-2.

With the same compounds, and using the leave-one-out
crossvalidation procedure, the rightness rate of the net
increased to 87.5% for the test set and only one compound
(26) was classified as active incorrectly (Table 4).

The two classes of quinone compounds were labeled,
that is, active compounds were labeled by code (1 0) and
inactive compounds as (0 1). From Table 5 we can see that
compound 26 was labeled as (0.9198 0.0104), but it should

Table 1 Models for 12 descriptors, selected by Fisher’s weight with rightness rate, and training (RMS1) and test (RMS2) errors

Compounds of test set Rightness rate (%) RMS1 RMS2

Model 1 9, 10, 22, 23, 24, 25, 27, 28 87.5 0.0154 0.125
Model 2 1, 10, 22, 23, 24, 25, 27, 28 87.5 0.0184 0.125
Model 3 9, 2, 22, 23, 24, 25, 27, 28 100 0.0132 0
Model 4 9, 10, 3, 23, 24, 25, 27, 28 87.5 0.0171 0.125
Model 5 9, 10, 22, 4, 24, 25, 27, 28 87.5 0.0186 0.125
Model 6 5, 9, 10, 22, 23, 25, 26, 27 75 0.0027 0.178
Model 7 6, 9, 10, 22, 23, 25, 27, 28 87.5 0.0185 0.125
Model 8 1, 2, 7, 22, 23, 24, 25, 26 87.5 0.0023 0.125

Table 2 Models of the data set, with five principal components (PCs) with rightness rate, and training (RMS1) and test (RMS2) errors

Compounds of test set Rightness rate (%) RMS1 RMS2

Model 1 9, 10, 22, 23, 24, 25, 27, 28 75 0.0164 0.160
Model 2 1, 10, 22, 23, 24, 25, 27, 28 75 0.0151 0.179
Model 3 9, 2, 22, 23, 24, 25, 27, 28 87.5 0.0156 0.125
Model 4 9, 10, 3, 23, 24, 25, 27, 28 75 0.0168 0.179
Model 5 9, 10, 22, 4, 24, 25, 27, 28 75 0.0172 0.160
Model 6 5, 9, 10, 22, 23, 25, 26, 27 75 0.0032 0.177
Model 7 6, 9, 10, 22, 23, 25, 27, 28 75 0.0172 0.177
Model 8 1, 2, 7, 22, 23, 24, 25, 26 87.5 0.0027 0.125
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be labeled as (0 1) and this is an indication that this
compound was incorrectly classified. Thus, through MLP
feedforward neural networks, trained by back-propagation
(BP), only one compound was classified as an outlier.

Kohonen network (self-organizing map)

Cluster analysis is often used to justify a chemistry space: if
compounds with similar biological behavior are grouped in
the proposed space, then it seems reasonable to conclude that
the chemistry space is good. In order to settle structural
similarities among the quinone compounds, a self-organizing
map (SOM) was built for these compounds [8].

The Kohonen network or SOM can be used to study data
of high-dimensional spaces by projection into a two-
dimensional plane [22]. The Kohonen architecture is based
on a single layer of neurons that are arranged in a box
having on its top a two dimensional grid of responses.
During the training phase, each input vector xS is presented
to the network, and only the neuron whose weight vector is
most similar to this input is stimulated (competitive
learning). In more mathematical terms, this so-called
winning neuron (c) is selected as the one providing the
minimal Euclidean distance to the pattern vector xS:

c min
j

X
xsi � wji

� �2( )
; j ¼ 1; 2; 3; . . . ;N� N ð5Þ

where xSi and wji are the ith coordinate of the input vector
xS and the ith weight level of neuron j, respectively, and
N × N is the number of neurons in the Kohonen layer. After
the winning neuron in the Kohonen layer is selected, the
weights of each neuron j (wji) in the Kohonen layer are
updated in order to make the weights closer to the input
vector according to following equation:

Δwji ¼ h 1� dr
dmax þ 1

� �
� xSi � wold

ji

� �
for d ¼ 0; 1; . . . ; dmax ð6Þ

where η is the learning rate, wold
ji denotes the numerical

value of the weight wji at the previous iteration, Δwji the
weight update, xSi the input vector, and the error is scaled

Table 3 Four molecular descriptors calculated for the quinone
compounds studied and used as input to neural network with
indication of activity. T5 Torsion angle, QTS1 sum of absolute values
of the atomic charges, VOLS2 volume of the substituent at region B,
HOMO−1 energy of the molecular orbital below HOMO

Compound T5 (°) QTS1 VOLS2
(Å3)

HOMO−1
(eV)

Activity

1 106.53 0.021 243.56 −0.3545 Inactive
2 106.47 0.002 243.09 −0.3522 Inactive
3 106.46 0.014 242.91 −0.3520 Inactive
4 112.93 −0.018 241.33 −0.3541 Inactive
5 112.84 −0.049 241.43 −0.3449 Inactive
6 112.96 −0.049 242.02 −0.3501 Inactive
7 113.17 −0.046 242.46 −0.3404 Inactive
8 113.07 −0.074 242.31 −0.3421 Inactive
9 112.80 −0.075 241.44 −0.3449 Inactive
10 120.80 −0.001 248.43 −0.3488 Inactive
11 118.35 −0.056 354.71 −0.3557 Active
12 112.84 −0.097 241.98 −0.3711 Active
13 132.55 −0.097 261.14 −0.3614 Active
14 132.66 −0.161 373.62 −0.3591 Active
15 132.60 −0.149 418.22 −0.3588 Active
16 121.75 −0.090 200.43 −0.3570 Active
17 123.09 −0.018 450.33 −0.3495 Active
18 123.80 −0.034 454.67 −0.3525 Active
19 123.82 −0.025 405.35 −0.3526 Active
20 118.19 −0.130 420.39 −0.3528 Active
21 122.40 −0.093 187.59 −0.3600 Active
22 121.49 −0.053 200.99 −0.3566 Active
23 123.24 −0.102 410.63 −0.3570 Active
24 123.21 −0.048 466.21 −0.3630 Active
25 123.31 −0.180 540.66 −0.3562 Active
26 122.93 −0.1150 411.17 −0.3423 Inactive
27 120.07 −0.0480 465.14 −0.3622 Active
28 128.48 −0.1820 380.90 −0.3576 Active

Table 4 Models with four descriptors, with rightness rate, and training (RMS1) and test (RMS2) errors

Compounds of test set Rightness rate (%) RMS1 RMS2

Model 1 9, 10, 22, 23, 24, 25, 27, 28 100 0.0107 0
Model 2 1, 10, 22, 23, 24, 25, 27, 28 100 0.0058 0
Model 3 9, 2, 22, 23, 24, 25, 27, 28 100 0.0060 0
Model 4 9, 10, 3, 23, 24, 25, 27, 28 100 0.0044 0
Model 5 9, 10, 22, 4, 24, 25, 27, 28 100 0.0045 0
Model 6 5, 9, 10, 22, 23, 25, 26, 27 87.5 0.0068 0.125
Model 7 6, 9, 10, 22, 23, 25, 27, 28 100 0.0042 0
Model 8 1, 2, 7, 22, 23, 24, 25, 26 87.5 0.0063 0.125
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according to the topological distance dr from the winner.
The topological distance dr is defined as the number of
neurons separating the neuron j from the winning neuron.
The size of the neighborhood dmax, which at the beginning
of learning covers the entire network, decreases during the
training phase and eventually it is limited only to the
winning neuron.

Additionally, the learning rate constant η also changes
during the training phase up to a minimum value, which is

reached when the number of training epochs (nepoch) equals
a pre-specified maximum value (ntot) [23]:

h ¼ hstart � h final
� �

1� hepoch
htot

� �
þ h final ð7Þ

The advantage of the SOM, compared with some other
projection methods is that the algorithm is very simple,
straightforward to implement and fast to compute. In the
field of pharmaceutical sciences, the SOM has been applied
to search for useful drugs [24].

SOM toolbox version 2 was used for clustering the
quinone compounds according to their activity. The SOM
toolbox, developed by the Laboratory of Computer and
Information Science, Helsinki University of Technology,
Finland, is available free of charge as a Matlab toolbox at
the website http://www.cis.hut.fi/projects/somtoolbox/. The
computation environment used was Matlab version 6.5,
developed by Mathworks (http://www.mathworks.com).

In order to improve data interpretation, three SOMs were
built with the 28 compounds. The first map was built with
12 descriptors selected by Fisher’s weights. The second was
built by the five PCs obtained with 12 descriptors, and the
third was built with the four descriptors that were
responsible for the separation between the active and
inactive compounds in previous work [20].

Figure 2, also named Labels, corresponds to the mapping
of the 28 samples from a space of X-dimensional onto a bi-
dimensional region. In this figure, each sample is repre-
sented by one neuron (the winner neuron). The SOM made

Fig. 2 Compounds mapping onto a bi-dimensional space for 12
descriptors selected by Fisher’s weights. All compounds were
assigned to one of two groups according to their activity. Continuous
and dotted lines represent active and inactive groups, respectively

Table 5 Results obtained with model 6 for training test

Compound Activity Class of compound Predicted class

5 Inactive 0 1 0.0171 0.9707
9 Inactive 0 1 0.0154 0.9626
10 Inactive 0 1 0.0412 0.9357
22 Active 1 0 0.8508 0.1025
23 Active 1 0 0.9967 0.0172
25 Active 1 0 0.9927 0.0192
26 Inactive 0 1 0.9198 0.0104
27 Active 1 0 0.9927 0.0269

Fig. 3 Compounds mapping onto a bidimensional space for five
principal components (PCs). All compounds were assigned to one of
two groups according to their activity. Continuous and dotted lines
represent active and inactive groups, respectively
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possible separation of each group into two regions: one for
active compounds and the other for inactive ones.

From Fig. 2, with 12 descriptors selected by Fisher’s
weights, we can see that compounds 10 and 26 are defined

in a region of the map of active compounds. As illustrated
in Fig. 2, these compounds are defined by a unique neuron
with compounds 16 and 11, and thus are considered as one
sub-group.

With five PCs obtained with 12 descriptors, we can see
according to Fig. 3 that compound 25 was defined in a
region of the map for inactive compounds. This compound
is also defined by a unique neuron with compounds 5 and
7. We can see also that compounds 10 and 26 are close
within a region of the map for active compounds. This
result is in agreement with MLP results, where compound
25 was also classified as inactive and compounds 10 and 26
as active.

From the four descriptors (T5, QTS1, VOLS2 and
HOMO−1) it was possible to reduce high dimensionality
data, thus making data interpretation and visualization
easier than with the original data set. The classification of
two different classes is also possible. Again, according to
Fig. 4 we can see that compound 26 was defined in a close
region of the map of active compounds. This result was
similar to that generated by MLP neural networks.
Therefore, this compound was also classified as an outlier
through a Kohonen neural network.

Figure 5 shows the component maps, each one
corresponding to the compounds as well as those variables
determined before. The value of the variable can be read on
the scale (right side of each map). Considering both Figs. 4

Fig. 5 Compound component maps, where each map shows the
calculated descriptors

Fig. 4 Compounds mapping onto a bi-dimensional space for four-
descriptors. All compounds were assigned to one of two groups
according to their activity. Continuous and dotted lines represent
active and inactive groups, respectively

Fig. 6 Examples of HOMO−1 contributions for three of the quinone
compounds studied. a Compound 18, representing active compounds
(note that all active compounds have no methoxy groups in their
structures); b compound 3, representing inactive compounds that have
no methoxy groups in their structures; c compound 7, representing
inactive compounds that have methoxy groups in their structures

J Mol Model (2008) 14:975–985 983



and 5, the value of each variable for each sample can be
recognized. The position occupied by a sample in the Label
map (Fig. 4) corresponds to the same position in the
component maps (Fig. 5).

From Fig. 5 we can see that the variable T5 has higher
values for active compound than inactive ones, and this
indicates that active compounds need to have a suitable
conformation, as determined by the torsion angle formed by
the atoms C1, C2, C3 and C4 (T5), so that they may
effectively interact with the biological receptor.

Regarding the sum of the charges of atoms C1, C2, C17,
C18, and the substituents in region A (QTS1), we can see
from Fig. 5 that the active compounds need to have
electron-acceptor atoms in region A.

According to Fig. 5, the active compounds need to have
high values of VOLS2 (the volume formed by the atoms
C15, O16, C17, C18 and the substituents at region B). The
variable VOLS2 can be related to the “fit” between the
compound and the receptor.

The energy of the frontier orbitals is an important
property in several chemical and pharmacological process-
es, and the reason for this is the fact that these properties
provide information on the electron-donating and electron-
accepting character of a compound, i.e., on the formation of
a charge transfer complex. From Fig. 5 we can see that the
energy of HOMO−1 for the active compounds must be
lower than the value for inactive compounds. This means
that active compounds are not good electron-donor mole-
cules when compared to inactive ones, i.e., perhaps the
inactive compounds interact through a charge transfer
mechanism before reaching the biological receptor, causing
the loss of anti-trypanocidal activity of these compounds.

Here, it is interesting to make some comments on the
influence of HOMO−1 on the trypanocidal activity of the
quinone compounds studied in this work, since HOMO−1
has also been found to be an important variable in previous
studies [25–28]. In order to illustrate the importance of
HOMO−1 in the discrimination between the active and
inactive quinone compounds studied here, we show in
Fig. 6 where HOMO−1 has its main contributions (the three
cases for the HOMO−1 behavior shown in Fig. 6 are those
observed in most of the 28 quinone compounds studied).

Figure 6a and b display the HOMO−1 contributions for
active and inactive compounds without methoxy groups in
their structures, respectively; Fig. 6c shows the HOMO−1
contributions for inactive compounds that have methoxy
groups in their structures. From Fig. 6, we can draw two
important conclusions: (1) all active, and some inactive,
quinone compounds have their main HOMO−1 contribu-
tions located in atoms of ring A (see Fig. 1); (2) the main
HOMO−1 contributions in inactive compounds that have a
methoxy group, are located in atoms of region A (see
Fig. 1). So, only in inactive compounds is the HOMO−1

significantly affected by the presence or absence of
methoxy groups.

In concluding, we can state that electronic and structural
properties are important factors in understanding the inter-
action between quinone compounds with anti-trypanocidal
activity and their biological receptors. The electronic
properties are related to the strength of a molecular
association by electronic interaction, and structural proper-
ties are related to the positioning of the molecule during its
interaction with the biological receptor. In fact, the character-
istics of the quinone compounds revealed in this work could
be useful in the design of new quinone molecules with
trypanocidal activity.

Conclusions

In this study, theoretical calculations and artificial neural
networks (ANN) were used for modeling and predicting the
behavior of 28 quinone compounds regarding their trypa-
nocidal activity.

Both multilayer perceptrons (MLP) feedforward neural
networks trained by back-propagation (BP) and Kohonen
neural networks showed similar results when we used
different values as input to the neural networks. The results
reveal that the reduction of variables is important for the
improvement of the correctness rate of active/inactive
compounds. With four variables, two electronic (QTS1
and HOMO−1) and two structural properties (T5 and
VOLS2), the rightness rate of the net increased by 87.5%
for the test set and only one compound was classified
incorrectly, which is an indication of the goodness of the fit.

From the four variables, we can conclude that electronic
and structural properties are important factors in determin-
ing the interaction between quinone compounds with
trypanocidal activity and their biological receptors. Elec-
tronic properties are related to the strength of a molecular
association by electronic interaction, and structural proper-
ties are related to the positioning of the molecule during the
interaction with the biological receptor.
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